Über Covimeter

Motivation

Langer Antwort kurzer Sinn: Mich faszinieren Daten, und ich wollte sie in lesbarer Form haben - war aber zu faul, das täglich mit Excel zu machen.

Statistik ist ein Werkzeug zur Erfassung, Darstellung und Analyse der Realität. Erster Schritt ist eine Abbildung auf mathematische Strukturen. Grundlegende Fehler passieren meist zum Zeitpunkt der Abbildung - darum muss man sich der Grenzen dieser Abbildung immer bewusst sein. Ich habe mich dafür entschieden, die Problematik der Abbildung anderen zu überlassen - konkret der Johns Hopkins Universität - und die dort vorhandene Zahlen einfach so aufzuarbeiten, dass sie alle erfassten Aspekte auch für den Laien lesbar darstellen - im Kern also nur deskriptive Statistik. Dabei passieren Fehler im Schritt vorab - viele Länder melden falsche oder gar keine Zahlen - die Methodik zur Messung, wer an Covid-19 gestorben ist (oder nur mit) sind unterschiedlich. All dies findet sich in den Zahlen wieder. Zum jetzigen Zeitpunkt ist die Rate von Verstorbenen zu Genesenen zwischen Großbritannien und Deutschland etwa um den Faktor 400 auseinander (20:10 vs. 1:19) - was aber, nach genauerer Sicht auf die Daten, wohl daran liegt, dass das UK derzeit "Genesene" noch nicht in derselben Geschwindigkeit als geheilt betrachtet, erfasst oder weitermeldet wie andere Länder. Insofern muss man vorsichtig sein, was man mit den vorliegenden Daten macht - aber sie zu haben, ist ein Vorteil gegenüber der Situation, in der man nur spekuliert.

Autor

Axel Schudak, 52, Diplom-Informatiker und Lehrer für Mathematik und Informatik an der Conerusschule Norden - die letzten drei Wochen dank Covid19 und Osterferien allein mit vielen Daten und einem Computer zu Hause. Zeit genug, mal wieder die eingerosteten Programmierkenntnisse auszupacken und die Daten automatisch in lesbare Formen zu schubsen.

Technik

CoviMeter ist in Python geschrieben. Täglich werden die Daten von der Frontseite der JHU mittels Copy/Paste übernommen (download von Github wäre aber auch möglich) und in den Datenbestand überführt. Kern ist ein DataPoint, der aus "Bereich", "Datum", "Infizierte", "Tote", "Geheilte" besteht. Alle anderen Daten werden daraus abgeleitet, das System ist für tägliche Updates ausgelegt (also nicht mehrere Einträge je Tag). Bereiche können zu Gruppen zusammengefasst werden. Ich übernehme nur die Länderdaten, d.h. die auf der JHU angebotene Aufteilung in Unterbereiche für einige Länder wird ignoriert. Die Diagramme werden mit Hilfe der Python-Bibliothek Mathplotlib aus den vorhandenen Daten erstellt, ausschliesslich als SVGs. Über einen selbstgeschriebenen Webseitenverwalter (auch in Python) werden die Daten auf meine Webseite bei Strato hochgeladen. Der tägliche manuelle Aufwand liegt mittlerweile bei ca. 10 Minuten, auch wenn der Computer etwas länger braucht (besonders für den Upload).
Derzeit besteht CoviMeter aus etwa 200 html-Seiten und 2100 Diagrammen, jeweils in englisch und deutsch.

Nutzung

Für die Nutzung der hier erstellten Daten sind alle Vorgaben einzuhalten, die von der Johns Hopkins Universität für die Nutzung ihrer Daten (im Kern nur für: "educational and academic research purposes") bzw. von Mathplot für die Nutzung ihrer Software besteht (https://matplotlib.org/index.html, im Kern: Verlinken bei wissenschaftlicher Veröffentlichung). Von meiner Seite aus kommen keine weiteren Einschränkungen hinzu.

Credits:

Covid-19-Data from John Hopkins University.
TableSort dank Jürgen Berkemeier und SelfHTML.
Diagrams made with Matplotlib.

Impressum - Datenschutzerklärung - Contact & GDPR Data Protection Declaration